Abstract

Nowadays, the fabrication of photoanodes with high light-harvesting capability and charge transfer efficiency is a key challenge for photoelectrochemical (PEC) water splitting. In this paper, large-scale patterned ZnO nanorod arrays (NRAs) were designed and fabricated via two-beam laser interference lithography and hydrothermal synthesis, which were further applied as PEC photoanodes for the first time. By adopting the ZnO NRA photoanodes with square pattern, the PEC cells achieved a maximum efficiency of 0.18%, which was improved 135% compared to the control group with no patterned ZnO NRAs. The large-scale highly ordered ZnO NRAs have enhanced light-harvesting ability due to the light-scattering effect. In addition, the enlarged surface area of the patterned ZnO NRAs accelerated the charge transfer at the photoanode/electrolyte interface. This research demonstrates an effective mean to realize the efficient solar water splitting, and the results suggest that large-scale highly ordered nanostructures are promising candidates in the field of energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.