Abstract

Understanding clonal strategies (i.e. the ability of plants to reproduce vegetatively) is particularly important to explain species persistence. A clonal individual may be considered as a network of interconnected ramets that colonizes space. Resources in this network can be shared and/or stored. We developed an individual-based model (IBM) to simulate the growth of an individual clonal plant. Typically a realistic IBM requires a large set of parameters to adequately represent the complexity of the clonal plant growth. Simulations in the literature are often limited to small subsets of the parameter space and are guided by the a priori knowledge and with heuristic aims of the researcher. The aim of this paper was to demonstrate the benefit of volunteer computing in computational ecology to systematically browse the parameter space and analyze the simulation results in order to draw rigorous conclusions. To be specific, we simulated clonal plant growth using nine growth rules related to the metabolic process, plant architecture, resource sharing and storage and nineteen input parameters. We chose 2–4 values per input parameter which corresponded to 20 millions of combinations tested through volunteer computing. We used three criteria to evaluate plant performance: plant total resource, ramet production and maximum length of one branch. The 1% top-performing plants were sorted according to these criteria. Plant total resource and ramet production were correlated while considering the top-performing plants. The maximum length of one branch was independent from the other two performance traits. We detected two processes promoting at least one of the plant performance traits: (i) a relatively high metabolic gain (high photosynthetic activity and low production cost for new growth units), a low resource storage and long integration distance for resource sharing; (ii) short spacer lengths and the predominance of elongation of existing branches over branching. Interactive effects between parameter values were demonstrated for more than half of the input parameters. Best performance was reached for plants with slightly different combinations of values for these parameters (i.e. different strategies) rather than a single one (i.e. unique strategy). This modeling approach with volunteer computing enabled us to proceed to large-scale virtual experiments which provided a new quality of insight into ecological processes linked with clonal plant growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.