Abstract

Several problems in computational biology require the all-against-all pairwise comparisons of tens of thousands of individual biological sequences. Each such comparison can be performed with the well-known Needleman-Wunsch alignment algorithm. However, with the rapid growth of biological databases, performing all possible comparisons with this algorithm in serial becomes extremely time-consuming. The massive computational power of graphics processing units (GPUs) makes them an appealing choice for accelerating these computations. As such, CPU-GPU clusters can enable all-against-all comparisons on large datasets. In this work, we present four GPU implementations for large-scale pairwise sequence alignment: TiledDScan-mNW, DScan-mNW, RScan-mNW and LazyRScan-mNW. The proposed GPU kernels exhibit different parallelization patterns: we discuss how each parallelization strategy affects the memory accesses and the utilization of the underlying GPU hardware. We evaluate our implementations on a variety of low- and high-end GPUs with different compute capabilities. Our results show that all the proposed solutions outperform the existing open-source implementation from the Rodinia Benchmark Suite, and LazyRScan-mNW is the preferred solution for applications that require performing the trace-back operation only on a subset of the considered sequence pairs (for example, the pairs whose alignment score exceeds a predefined threshold). Finally, we discuss the integration of the proposed GPU kernels into a hybrid MPI-CUDA framework for deployment on CPU-GPU clusters. In particular, our proposed distributed design targets both homogeneous and heterogeneous clusters with nodes that differ amongst themselves in their hardware configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.