Abstract

Calibration, on the basis of data from centrifuge and shake table experiments, continues to promote the development of more accurate computational models. Capabilities such as coupled solid–fluid formulations and nonlinear incremental-plasticity approaches allow for more realistic representations of the involved static and dynamic/seismic responses. In addition, contemporary high-performance parallel computing environments are permitting new insights, gained from analyses of entire ground-foundation-structural systems. On this basis, the horizon is expanding for large-scale numerical simulations to further contribute toward the evolution of more accurate analysis and design strategies. The studies presented in this paper address this issue through recently conducted three-dimensional (3D) representative research efforts that simulate the seismic response of (1) a shallow-foundation liquefaction countermeasure, (2) a pile-supported wharf, and (3) a full bridge-ground system. A discussion of enabling tools ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.