Abstract
Recognition memory is the ability to recognize previously encountered objects. Even this relatively simple, yet extremely fast, ability requires the coordinated activity of large-scale brain networks. However, little is known about the sub-second dynamics of these networks. The majority of current studies into large-scale network dynamics is primarily based on imaging techniques suffering from either poor temporal or spatial resolution. We investigated the dynamics of large-scale functional brain networks underlying recognition memory at the millisecond scale. Specifically, we analyzed dynamic effective connectivity from intracranial electroencephalography while epileptic subjects (n = 18) performed a fast visual recognition memory task. Our data-driven investigation using Granger causality and the analysis of communities with the Louvain algorithm spotlighted a dynamic interplay of two large-scale networks associated with successful recognition. The first network involved the right visual ventral stream and bilateral frontal regions. It was characterized by early, predominantly bottom-up information flow peaking at 115 ms. It was followed by the involvement of another network with predominantly top-down connectivity peaking at 220 ms, mainly in the left anterior hemisphere. The transition between these two networks was associated with changes in network topology, evolving from a more segregated to a more integrated state. These results highlight that distinct large-scale brain networks involved in visual recognition memory unfold early and quickly, within the first 300 ms after stimulus onset. Our study extends the current understanding of the rapid network changes during rapid cognitive processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.