Abstract
In complex pattern recognition tasks, objects are typically characterized by means of multimodality attributes, including categorical, numerical, text, image, audio, and even videos. In these cases, data are usually high dimensional, structurally complex, and granular. Those attributes exhibit some redundancy and irrelevant information. The evaluation, selection, and combination of multimodality attributes pose great challenges to traditional classification algorithms. Multikernel learning handles multimodality attributes by using different kernels to extract information coming from different attributes. However, it cannot consider the aspects fuzziness in fuzzy classification. Fuzzy rough sets emerge as a powerful vehicle to handle fuzzy and uncertain attribute reduction. In this paper, we design a framework of multimodality attribute reduction based on multikernel fuzzy rough sets. First, a combination of kernels based on set theory is defined to extract fuzzy similarity for fuzzy classification with multimodality attributes. Then, a model of multikernel fuzzy rough sets is constructed. Finally, we design an efficient attribute reduction algorithm for large scale multimodality fuzzy classification based on the proposed model. Experimental results demonstrate the effectiveness of the proposed model and the corresponding algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.