Abstract
The quickest change detection problem is considered in the context of monitoring large-scale independent normal distributed data streams with possible changes in some of the means. It is assumed that for each individual local data stream, either there are no local changes, or there is a "big" local change that is larger than a pre-specified lower bound. Two different kinds of scenarios are studied: one is the sparse post-change case when the unknown number of affected data streams is much smaller than the total number of data streams, and the other is when all local data streams are affected simultaneously although not necessarily identically. We propose a systematic approach to develop efficient global monitoring schemes for quickest change detection by combining hard thresholding with linear shrinkage estimators to estimating all post-change parameters simultaneously. Our theoretical analysis demonstrates that the shrinkage estimation can balance the tradeoff between the first-order and second-order terms of the asymptotic expression on the detection delays, and our numerical simulation studies illustrate the usefulness of shrinkage estimation and the challenge of Monte Carlo simulation of the average run length to false alarm in the context of online monitoring large-scale data streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.