Abstract
We introduce a Gaussian process latent factor model for multi-label classification that can capture correlations among class labels by using a small set of latent Gaussian process functions. To address computational challenges, when the number of training instances is very large, we introduce several techniques based on variational sparse Gaussian process approximations and stochastic optimization. Specifically, we apply doubly stochastic variational inference that sub-samples data instances and classes which allows us to cope with Big Data. Furthermore, we show it is possible and beneficial to optimize over inducing points, using gradient-based methods, even in very high dimensional input spaces involving up to hundreds of thousands of dimensions. We demonstrate the usefulness of our approach on several real-world large-scale multi-label learning problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.