Abstract

Microgravity has a dramatic impact on human physiology, illustrated in particular, with skeletal muscle impairment. A thorough understanding of the mechanisms leading to loss of muscle mass and structural disorders is necessary for defining efficient clinical and spaceflight countermeasures. We investigated the effects of long-term bed rest on the transcriptome of soleus (SOL) and vastus lateralis (VL) muscles in healthy women (BRC group, n = 8), and the potential beneficial impact of protein supplementation (BRN group, n = 8) and of a combined resistance and aerobic training (BRE group, n = 8). Gene expression profiles were obtained using a customized microarray containing 6,681 muscles-relevant genes. A two-class statistical analysis was applied on 2,103 genes with consolidated expression in BRC, BRN, and BRE groups. We identified 472 and 207 mRNAs whose expression was modified in SOL and VL from BRC group, respectively. Further clustering analysis, identifying relevant biological mechanisms and pathways, reported five main subclusters. Three are composed of upregulated mRNAs involved mainly in nucleic acid and protein metabolism, and two made up of downregulated transcripts encoding components involved in energy metabolism. Exercise countermeasure demonstrated drastic compensatory effects, decreasing the number of differentially expressed mRNAs by 89 and 96% in SOL and VL, respectively. In contrast, nutrition countermeasure had moderate effects and decreased the number of differentially-expressed transcripts by 40 and 25% in SOL and VL. Together, these data present a systematic, global and comprehensive view of the adaptive response of female muscle to long-term atrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.