Abstract

The mean flow, turbulence characteristics, and dynamics of large-scale vortices are investigated for an offset jet issuing from different nozzle expansion ratios using a four-receiver acoustic Doppler velocimeter. The jet was discharged from sharp-edged rectangular nozzles with expansion ratios of 0.24, 0.49, 0.75, and 1.00 at Reynolds number of 5.3 × 104. The decay rate of the maximum mean velocity decreased with increasing expansion ratio due to suppressed lateral entrainment of ambient fluid. The acoustic Doppler velocimeter proved capable of providing high-quality data to investigate the energy spectrum and turbulent structures embedded in the flow. Large-scale vortices dominated the recirculation region compared to the reattachment and developing regions of the jet. Increasing the expansion ratio resulted in larger order of magnitude of the vortices within the recirculation region. The turbulent structures stretched in the lateral direction in regions where smaller-sized structures existed in the streamwise direction and vice versa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.