Abstract

Estimating pile group efficiency for open-ended steel piles in small group arrangements is a challenging task for designers. This paper reports on the large-scale experimental campaign performed for the BorWin gamma offshore converter platform, which involved single piles and two-pile group systems on a scale of 1:10. The experimental works included installation, dynamic end-of-driving tests, dynamic restrike tests, and static load tests of a single pile and a pair of two-pile groups in densely compacted, artificially prepared homogeneous sand. The cone penetration test (CPT) profiles and the blow counts confirmed that the foundation systems are comparable to each other. The experimental results of the single pile system were compared with conventional design methods. Such comparison indicated that CPT-based methods and load-transfer methods are applicable at the considered model scale. The bearing capacity prediction obtained via the Case Pile Wave Analysis Program (CAPWAP) method is conservative with respect to the static capacity. A consistent setup effect can be detected by analyzing the complete dynamic loading session. The pile group efficiency for the given foundation system was found to be less than 1.0 at both very small and very large soil strains, while it equaled 1.0 at failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call