Abstract

Renewable energy sources, such as wind turbines, have become much more prevalent in recent years, and thus a popular form of energy generation. This is in part due to the ‘Fit for 55’ EU initiative, and in part, to rising fossil fuel prices, as well as the perceived requirement for nations to have power independence, and due to the influence of renewable energy sources we can see a marked increase in large wind farms in particular. However, wind farms by their very nature are highly inconsistent regarding power generation and are weather-dependent, thus presenting several challenges for transmission system operators. One of the options to overcome these issues is a system being able to forecast the generated power in a wide-ranging period—ranging from 15 min up to 36 h, and with an adequate resolution. Such a system would better help manage the power grid and allow for greater utilization of the green energy produced. In this document, we present a process of development for such a system, along with a comparison of the various steps of the process, including data preparation, feature importance analysis, and the impact of various data sources on the forecast horizon. Lastly, we also compare multiple machine learning models and their influence on the system quality and execution time. Additionally, we propose an ensemble that concatenates predictions over the forecast horizon. The conducted experiments have been evaluated on seven wind farms located in Central Europe. Out of the experiments conducted, the most efficient solution with the lowest error rate and required computational resources has been obtained for random forest regression, and two independent models; one for the short-term horizon, and the other, for the mid- to long-term horizon, which was combined into one forecasting system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.