Abstract

Sphingolipids (SPs) are ubiquitous, structurally diverse molecules that include ceramides, sphingomyelins, and sphingosines. They are involved in various pathologies including obesity and type 2 diabetes mellitus (T2DM). Therefore, it is likely that perturbations in plasma concentrations of SPs are associated with disease. Identifying these associations may reveal useful biomarkers or provide insight into disease processes. We performed a lipidomics evaluation of molecularly-distinct SPs in the plasma of 2,302 ethnically-Chinese Singaporeans using electrospray ionization mass spectrometry coupled with liquid chromatography. SP profiles were compared to clinical and biochemical characteristics, and subjects were evaluated by follow-up visits for 11 years. We found that ceramides correlate positively but hexosylceramides correlate negatively with body mass index (BMI) and homeostatic model assessment of insulin resistance (HOMA-IR). Furthermore, SPs with a d16:1 sphingoid backbone correlate more positively with BMI and HOMA-IR, while d18:2 SPs correlate less positively, relative to canonical d18:1 SPs. We also found that higher concentrations of two distinct sphingomyelins were associated with a higher risk of T2DM (HR 1.45, 95% CI 1.18-1.78 for SM d16:1/C18:0; and HR 1.40, 95% CI 1.17-1.68 for SM d18:1/C18:0). We identified significant associations between SPs and obesity/T2DM characteristics, specifically, that of hexosylceramides, d16:1 SPs, and d18:2 SPs. This suggests that the balance of SP metabolism, rather than ceramide accumulation, is associated with the pathology of obesity. We further identified two specific SPs that may represent prognostic biomarkers for T2DM. Funding sources are listed in the Acknowledgements section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.