Abstract

Rheumatoid arthritis is the most common systematic autoimmune disease and its etiology is believed to have both strong genetic and environmental components. We demonstrate the utility of including genetic and clinical phenotypes as covariates within a linkage analysis framework to search for rheumatoid arthritis susceptibility loci. The raw genotypes of 1302 affected relative pairs were combined from four large family-based samples (North American Rheumatoid Arthritis Consortium, United Kingdom, European Consortium on Rheumatoid Arthritis Families, and Canada). The familiality of the clinical phenotypes was assessed. The affected relative pairs were subjected to autosomal multipoint affected relative-pair linkage analysis. Covariates were included in the linkage analysis to take account of heterogeneity within the sample. Evidence of familiality was observed with age at onset (p << 0.001) and rheumatoid factor (RF) IgM (p << 0.001), but not definite erosions (p = 0.21). Genome-wide significant evidence for linkage was observed on chromosome 6. Genome-wide suggestive evidence for linkage was observed on chromosomes 13 and 20 when conditioning on age at onset, chromosome 15 conditional on gender, and chromosome 19 conditional on RF IgM after allowing for multiple testing of covariates.

Highlights

  • Rheumatoid arthritis (RA) is the most common systematic autoimmune disease and is believed to have both strong genetic and environmental components in its etiology

  • We describe an analysis of a combined sample of raw genotypes provided by Genetic Analysis Workshop 15 (GAW15), comprising four family-based samples known by their collection center as NARAC (North American Rheumatoid Arthritis Consortium), UK (United Kingdom), ECRAF (European Consortium on Rheumatoid Arthritis Families), and Canada

  • The NARAC and UK samples contributed a total of 61 non-sibling affected relative-pair (ARP)

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is the most common systematic autoimmune disease and is believed to have both strong genetic and environmental components in its etiology. Females are at a higher risk than males and their age at presentation shows considerable variability [1]. We describe an analysis of a combined sample of raw genotypes provided by Genetic Analysis Workshop 15 (GAW15), comprising four family-based samples known by their collection center as NARAC (North American Rheumatoid Arthritis Consortium), UK (United Kingdom), ECRAF (European Consortium on Rheumatoid Arthritis Families), and Canada. The aim of the analysis was to investigate the familiality of clinical phenotypes and employ them and genetic phenotypes as covariates in a linkage analysis framework to allow us to investigate models, such as locus heterogeneity, that give rise to different phenotypes within RA

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.