Abstract

BackgroundThe ornamental plant Gerbera hybrida bears complex inflorescences with morphologically distinct floral morphs that are specific to the sunflower family Asteraceae. We have previously characterized several MADS box genes that regulate floral development in Gerbera. To study further their behavior in higher order complex formation according to the quartet model, we performed yeast two- and three-hybrid analysis with fourteen Gerbera MADS domain proteins to analyze their protein-protein interaction potential.ResultsThe exhaustive pairwise interaction analysis showed significant differences in the interaction capacity of different Gerbera MADS domain proteins compared to other model plants. Of particular interest in these assays was the behavior of SEP-like proteins, known as GRCDs in Gerbera. The previously described GRCD1 and GRCD2 proteins, which are specific regulators involved in stamen and carpel development, respectively, showed very limited pairwise interactions, whereas the related GRCD4 and GRCD5 factors displayed hub-like positions in the interaction map. We propose GRCD4 and GRCD5 to provide a redundant and general E function in Gerbera, comparable to the SEP proteins in Arabidopsis. Based on the pairwise interaction data, combinations of MADS domain proteins were further subjected to yeast three-hybrid assays. Gerbera B function proteins showed active behavior in ternary complexes. All Gerbera SEP-like proteins with the exception of GRCD1 were excellent partners for B function proteins, further implicating the unique role of GRCD1 as a whorl- and flower-type specific C function partner.ConclusionsGerbera MADS domain proteins exhibit both conserved and derived behavior in higher order protein complex formation. This protein-protein interaction data can be used to classify and compare Gerbera MADS domain proteins to those of Arabidopsis and Petunia. Combined with our reverse genetic studies of Gerbera, these results reinforce the roles of different genes in the floral development of Gerbera. Building up the elaborate capitulum of Gerbera calls for modifications and added complexity in MADS domain protein behavior compared to the more simple flowers of, e.g., Arabidopsis.

Highlights

  • The ornamental plant Gerbera hybrida bears complex inflorescences with morphologically distinct floral morphs that are specific to the sunflower family Asteraceae

  • Phylogenetic positioning of Gerbera MADS box genes Of the tested Gerbera MADS box genes, GSQUA1, GGLO1, GDEF1, GDEF2, GAGA1, GAGA2, GRCD1, GRCD2 and GRCD3 were included in a phylogenetic tree published previously [41] and were placed among orthologous genes from other plant species

  • GSQUA1 and GSQUA3 group together with AP1 and CAULIFLOWER (CAL) of Arabidopsis [49,50], while GSQUA2, GSQUA4, GSQUA5 and GSQUA6 are phylogenetically closer to the Arabidopsis FRUITFULL (FUL) gene [51,52]

Read more

Summary

Introduction

We have previously characterized several MADS box genes that regulate floral development in Gerbera To study further their behavior in higher order complex formation according to the quartet model, we performed yeast two- and three-hybrid analysis with fourteen Gerbera MADS domain proteins to analyze their protein-protein interaction potential. The general structure of the best studied type II MADS domain proteins consists of the conserved MADS and the plant-specific K (keratin-like) domains, which flank the less conserved I (intervening) domain, and the C (carboxy terminal) domains. All of these protein domains have been shown to be able to participate in dimerization processes. The MADS domain has further DNA binding capacity [14], whereas the variable C domain of some, but not all, MADS domain proteins contains amino acids that function in transcriptional activation [2,15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call