Abstract

A large fraction of the energy released during the gravitational collapse of the core of a massive star is carried by neutrinos. Neutrinos play the main role in explaining core-collapse supernovae. A self-consistent formulation of the gravitational collapse is solved using 2D gas dynamics, taking into account the spectral transport of neutrinos in the framework of neutrino flux-limited diffusion. Large-scale convection leads to an increase in the mean energy of the neutrinos from 10 to 15 MeV, which is important for explaining supernovae, as well as for designing experiments on detecting high-energy neutrinos from supernovae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call