Abstract

The mucus filling the human cervical opening blocks the entry to the uterus, but this has to be relative and allow for the sperm to penetrate at ovulation. We studied this mucus, its content of proteins and mucins, and the mucin O-glycosylation in cervical secretions before, during, and after ovulation. Cervical mucosal secretions from 12 subjects were collected, reduced-alkylated, separated with polyacrylamide or agarose/polyacrylamide gel electrophoresis, and stained with silver, Alcian blue, or Coomassie Blue stain. Protein and mucin bands from before and during ovulation were digested and subsequently analyzed by nano-LC-FT-ICR MS and MS/MS. We identified 194 proteins after searches against the NCBI non-redundant protein database and an in-house mucin database. Three gel-forming (MUC5B, MUC5AC, and MUC6) and two transmembrane mucins (MUC16 and MUC1) were identified. For the analysis of mucin O-glycosylation, separated mucins from six individuals were blotted to PVDF membranes, and the O-glycans were released by reductive beta-elimination and analyzed with capillary HPLC-MS and -MS/MS. At least 50 neutral, sialic acid-, and sulfate-containing oligosaccharides were found. An increase of GlcNAc-6GalNAcol Core 2 structures and a relative decrease of NeuAc residues are typical for ovulation, and NeuAc-6GalNAcol and NeuAc-3Gal- epitopes are typical for the non-ovulatory phases. The cervical mucus at ovulation is thus characterized by a relative increase in neutral fucosylated oligosaccharides. This comprehensive characterization of the mucus during the menstrual cycle suggests mucin glycosylation as the major alteration at ovulation, but the relation to the altered physicochemical properties and sperm penetrability is still not understood.

Highlights

  • The mucus filling the human cervical opening blocks the entry to the uterus, but this has to be relative and allow for the sperm to penetrate at ovulation

  • We determined the proteome and glycome of the cervical mucus that protects the entry into the uterine cavity

  • As the major constituent of the mucins is their O-glycans, our analysis of the mucin glycome reflects a major part of the cervical mucus glycome

Read more

Summary

Introduction

The mucus filling the human cervical opening blocks the entry to the uterus, but this has to be relative and allow for the sperm to penetrate at ovulation. We studied this mucus, its content of proteins and mucins, and the mucin O-glycosylation in cervical secretions before, during, and after ovulation. The cervical mucus at ovulation is characterized by a relative increase in neutral fucosylated oligosaccharides This comprehensive characterization of the mucus during the menstrual cycle suggests mucin glycosylation as the major alteration at ovulation, but the relation to the altered physicochemical properties and sperm penetrability is still not understood. All mucins contain large mucin domains, called PTS domains, that are rich in the amino acids serine, threonine, 708 Molecular & Cellular Proteomics 6.4

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call