Abstract

A large-scale continuous detonation combustor (CDC) has been designed, fabricated and tested to study the effect of different design elements on the operation process and CDC propulsion performance. It has been shown experimentally that widening of the air-inlet slit in the annular combustion chamber from 2 to 15 mm leads to a decrease in the number of detonation waves (DWs) simultaneously circulating in the combustor from four to one and, finally, to transition to the operation mode with intermittent (pulse) longitudinal reaction waves resembling pulse detonations. The number of DWs and the thrust produced by the CDC can be increased by installing a shaped obstacle at the CDC exit nozzle providing the blockage of the combustor cross section. The maximum net thrust produced by the CDC attained 6 kN at the total mass flow rate of fuel components of 7.5 kg/s, whereas the maximum fuel-based specific impulse attained ∼3000 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.