Abstract

Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf0.5 Zr0.5 O2 (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1nm, with values ranging from 4 to 50nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.