Abstract

BackgroundBird genomes have very different compositional structure compared with other warm-blooded animals. The variation in the base skew rules in the vertebrate genomes remains puzzling, but it must relate somehow to large-scale genome evolution. Current research is inclined to relate base skew with mutations and their fixation. Here we wish to explore base skew correlations in bird genomes, to develop methods for displaying and quantifying such correlations at different scales, and to discuss possible explanations for the peculiarities of the bird genomes in skew correlation.ResultsWe have developed a method called Base Skew Double Triangle (BSDT) for exhibiting the genome-scale change of AT/CG skew as a two-dimensional square picture, showing base skews at many scales simultaneously in a single image. By this method we found that most chicken chromosomes have high AT/CG skew correlation (symmetry in 2D picture), except for some microchromosomes. No other organisms studied (18 species) show such high skew correlations. This visualized high correlation was validated by three kinds of quantitative calculations with overlapping and non-overlapping windows, all indicating that chicken and birds in general have a special genome structure. Similar features were also found in some of the mammal genomes, but clearly much weaker than in chickens. We presume that the skew correlation feature evolved near the time that birds separated from other vertebrate lineages. When we eliminated the repeat sequences from the genomes, the AT and CG skews correlation increased for some mammal genomes, but were still clearly lower than in chickens.ConclusionOur results suggest that BSDT is an expressive visualization method for AT and CG skew and enabled the discovery of the very high skew correlation in bird genomes; this peculiarity is worth further study. Computational analysis indicated that this correlation might be a compositional characteristic, present not only in chickens, but also remained or developed in some mammals during evolution. Special aspects of bird metabolism related to e.g. flight may be the reason why birds evolved or retained the skew correlation. Our analysis also indicated that repetitive DNA sequence elements need to be taken into account in studying the evolution of the correlation between AT and CG skews.

Highlights

  • Bird genomes have very different compositional structure compared with other warm-blooded animals

  • Our results suggest that Base Skew Double Triangle (BSDT) is an expressive visualization method for AT and CG

  • Computational analysis indicated that this correlation might be a compositional characteristic, present in chickens, and remained or developed in some mammals during evolution

Read more

Summary

Introduction

Bird genomes have very different compositional structure compared with other warm-blooded animals. The variation in the base skew rules in the vertebrate genomes remains puzzling, but it must relate somehow to large-scale genome evolution. We wish to explore base skew correlations in bird genomes, to develop methods for displaying and quantifying such correlations at different scales, and to discuss possible explanations for the peculiarities of the bird genomes in skew correlation. Local violations of this parity rule have been observed in all known organisms and in bacteria [2]. AT skew (A-T)/(A+T) and CG skew (C-G)/(G+C) can vary wildly in local genome scales. The base skews have been found closely related to genome function domains, such as the origin of replication, gene distribution, transcription and replication direction in bacteria [3,4,5], plants [6].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.