Abstract

BackgroundThe large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR) in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures.ResultsBioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75) compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg) so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies.ConclusionLarge-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.

Highlights

  • The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge

  • GPCR codon-optimisation [4] and high throughput approaches used to identify GPCRs with the highest expression levels in different expression systems [5] are among the methods that have been used to produce sufficiently high levels of functional GPCRs suitable for structural studies

  • (page number not for citation purposes) http://www.microbialcellfactories.com/content/7/1/28 plete EDTA-free protease inhibitor cocktail tablets were purchased from Roche and the bicinchoninic acid assay (BCA) kit purchased from Pierce

Read more

Summary

Introduction

The large-scale production of G-protein coupled receptors (GPCRs) for functional and structural studies remains a challenge. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml) with moderate cell densities (OD600 ~15). The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. One limiting factor to structural studies of GPCRs has, until recently, been low expression levels [3]. GPCR codon-optimisation [4] and high throughput approaches used to identify GPCRs with the highest expression levels in different expression systems [5] are among the methods that have been used to produce sufficiently high levels of functional GPCRs suitable for structural studies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.