Abstract

The increased production rate targets of the aerospace industry have driven the development of dry fibre infusion processes. Biaxial Non-Crimp Fabrics (NCFs) are considered in this work due to their potential high deposition rates and higher mechanical performance to woven fabrics. Forming is an integral step prior to infusion and curing. Understanding the forming behaviour of NCFs at scale is therefore key to achieving high quality parts at high rates. To investigate the draping and shearing behaviour of NCFs, geometries with complexities associated with the composite structure are used. This study presents an experimental campaign on two large scale (2 metres in span) geometries with complexities seen in primary aerostructures. The combination of features such as ramps and curvature with corner radii leads to distinctive out-of-plane wrinkling. The relationship between geometry, material and resulting preform quality is observed through the use of 3D scans. Results show differing preform quality in terms of wrinkling phenomena, showing the importance of geometry of choice for material drapability tests at an industrial scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.