Abstract

This research aims to establish the possible habitat suitability of Heracleum sosnowskyi (HS), one of the most aggressive invasive plants, in current and future climate conditions across the territory of the European part of Russia. We utilised a species distribution modelling framework using publicly available data of plant occurrence collected in citizen science projects (CSP). Climatic variables and soil characteristics were considered to follow possible dependencies with environmental factors. We applied Random Forest to classify the study area. We addressed the problem of sampling bias in CSP data by optimising the sampling size and implementing a spatial cross-validation scheme. According to the Random Forest model built on the finally selected data shape, more than half of the studied territory in the current climate corresponds to a suitability prediction score higher than 0.25. The forecast of habitat suitability in future climate was highly similar for all climate models. Almost the whole studied territory showed the possibility for spread with an average suitability score of 0.4. The mean temperature of the wettest quarter and precipitation of wettest month demonstrated the highest influence on the HS distribution. Thus, currently, the whole study area, excluding the north, may be considered as s territory with a high risk of HS spreading, while in the future suitable locations for the HS habitat will include high latitudes. We showed that chosen geodata pre-processing, and cross-validation based on geospatial blocks reduced significantly the sampling bias. Obtained predictions could help to assess the risks accompanying the studied plant invasion capturing the patterns of the spread, and can be used for the conservation actions planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.