Abstract

Abstract The simulations of tropical convection and thermodynamic states in response to different imposed large-scale forcing are carried out by using a cloud-resolving model and are evaluated with the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment observation. The model is forced either with imposed large-scale vertical velocity and horizontal temperature and moisture advections (model 1) or with imposed total temperature and moisture advections (model 2). The comparison of simulations with observations shows that bias in temperature and moisture simulations by model 1 is smaller than that by model 2. This indicates that the adjustment of the mean thermodynamic stability distribution by vertical advection in model 1 is responsible for better simulations. Model 1 is used to examine effects of different parameterized solar radiative and cloud microphysical processes. A revised parameterization scheme for cloud single scattering properties in solar radiation calculations is fo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.