Abstract

Noctis Labyrinthus (Mars) is characterized by many tectonic features, which represent brittle deformation of the crust. This tectonic setting was analysed by remote sensing of the Viking Mars Digital Image Model (MDIM) mosaic and Mars Orbiter Camera (MOC) global mosaic, in order to identify deformational events. The main features are normal faults producing horst-graben structures, strike-slip faults, and related en-echelon and pull-apart basins. Using the criterion of cross-cutting relationships and analysis of secondary structures, to infer sense of movement of faults, two deformational phases were identified in the Noctis Labyrinthus area. The first, D1, located mainly in the northern part, is characterized by transtensional faults (Noachian). The second, D2, recorded in the southern part of the Noctis Labyrinthus by an orthorhombic extensional fault pattern along NNE and WNW trends, is related to the Valles Marineris formation (Late Noachian–Early Hesperian). A third tectonic event, D3, represented by the partly known dextral NW strike-slip faults cross-cutting the Valles Marineris Canyon System (Late Hesperian?-Amazonian?), was not found in Noctis Labyrinthus at the scale and resolution considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.