Abstract

Large-scale periodic gold network electrodes were fabricated using the developed and versatile nanosphere lithography technique. The fabrication processes, structural characterizations and network formation mechanism were described in detail. An enhanced optical transmission peak was observed from the transmission spectrum, which could be assigned to the extraordinary transmission mediated commonly by (a) localized surface plasmon resonance (LSPR) and (b) surface plasmon polaritons. The effects of film thickness, sphere diameter (periodicity) and reactive ion etching time on their optical and electrical properties were also investigated. By controlling these three independent variables, we could tune the SPR peak position and their light transmission distributions flexibly. Our large-scale continuous gold network can serve as a transparent conductive electrode, while possessing the role of a surface plasmonic resonance component can make it very attractive for potential photo-electric device applications in a range from plasmon-enhanced broadband photovoltaics to SPR-based chemo- and biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call