Abstract
Whole slide images contain a magnitude of quantitative information that may not be fully explored in qualitative visual assessments. We propose: (1) a novel pipeline for extracting a comprehensive set of visual features, which are detectable by a pathologist, as well as sub-visual features, which are not discernible by human experts and (2) perform detailed analyses on renal images from mice with experimental unilateral ureteral obstruction. An important criterion for these features is that they are easy to interpret, as opposed to features obtained from neural networks. We extract and compare features from pathological and healthy control kidneys to learn how the compartments (glomerulus, Bowman's capsule, tubule, interstitium, artery, and arterial lumen) are affected by the pathology. We define feature selection methods to extract the most informative and discriminative features. We perform statistical analyses to understand the relation of the extracted features, both individually, and in combinations, with tissue morphology and pathology. Particularly for the presented case-study, we highlight features that are affected in each compartment. With this, prior biological knowledge, such as the increase in interstitial nuclei, is confirmed and presented in a quantitative way, alongside with novel findings, like color and intensity changes in glomeruli and Bowman's capsule. The proposed approach is therefore an important step towards quantitative, reproducible, and rater-independent analysis in histopathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.