Abstract

Previous simulations studying winds only focus on the line force due to photons from central active galactic nuclei. What properties of the winds will be when including the re-radiation force due to the scattered and reprocessed photons (i.e., the re-radiation effect)? We perform simulations to study the large-scale dynamics of accretion disk winds driven by radiation line force and re-radiation force. For the fiducial run, we find that the re-radiation force drives stronger outflows during the early stages. When the flows get into the steadiness, the UV radiation due to spectral lines dominates total radiation and the re-radiation effect could be negligible. The opening angle of winds narrows as the initial gas density increases. The larger the gas density is, the stronger the re-radiation effect will be. For M BH = 106 M ⊙, ε = 0.3, the outflows do become much stronger with the re-radiation effect and the winds still cannot escape from gravitational potential. We find that the detection probability of ultra-fast outflows and the properties of the winds are both consistent with the observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.