Abstract

ABSTRACT The hierarchical carbonaceous nanofillers viz. carboxylated multiwalled carbon nanotube (MWCNT-COOH as 1D), hydroxylated few-layer graphene (FLG-OH as 2D), and hybrid 3D i.e., MWCNT-COOH immobilized into FLG-OH were dispersed into segmented thermoplastic polyurethane (TPU) by twin-screw extrusion (TSE). The concentration of nanofillers was varied as 0.25, 0.5, 1.0, 2.0 and 5 wt%. To increase the level of dispersion, hybrid 3D nanofillers were also incorporated into TPU by producing cellular structures through supramolecular self-assembly route (SSAR). The cellular structure in which the nanofillers were found to be uniformly dispersed was then compounded by TSE technique. The large-scale uniform dispersion was observed at higher loading (2 wt%) by SSAR followed by TSE when compared with direct TSE. Uniform dispersion was found at 1 wt% loading by direct TSE. PU nanocomposite film reinforced with 2 wt% hybrid 3D nanofillers showed good gas barrier property with ~63% reduction of helium gas permeability to 472 cm3/m2/day from 1287 cm3/m2/day of neat PU film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.