Abstract

AbstractWe present a set of, large scale direct N-body simulations of the galaxy collision with the central Supermassive Black Hole Binary (SMBHB) system. Based on our simulations which include the accurate Post Newtonian (PN) relativistic dynamical corrections we can estimated the merging time for the real astrophysical object. Each galaxy initially was represented as a set of particles (up to N=500k) with Plummer distribution. The SMBHBs system is described using the two special high mass, i.e. “relativistic”, particles. The interaction between these two particles have an extra PN correction terms (up to 3.5PN). Merging time upper limit was obtained for the closely interacting galaxy system NGC 6240.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.