Abstract

Controllable tailoring the microstructure of carbon based metal-free catalysts offers a promising avenue for boosting the bifunctional performance of oxygen electrode, but a big challenge owing to the sluggish kinetics of ORR and OER. Herein, a wet ball-milling induced defect assisted in-situ pyrolysis strategy is designed to fabricate N, S and P tri-doped graphene (NSP-Gra). The structural defect of graphene, generated by strong mechanical shear forces during ball-milling, is greatly advantageous for effective doping of the heteroatoms. The NSP-Gra shows a superior bifunctional catalytic activity toward ORR and low operating potential of 1.50 V at 10 mA cm−2 for OER in 6.0 M KOH. Excitingly, the Zn-air battery equipped with NSP-Gra as cathode demonstrates a power density up to 225 mW cm−2, and long charge-discharge cycling stability. The enhanced electrochemical performance of NSP-Gra can be ascribed to the fast charge transport capability and rich active sites introduced by multi-heteroatom dopants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.