Abstract
This study focuses on building an intelligent decision-making attention mechanism in which the channel relationship and conduct feature maps among specific deep Dense ConvNet blocks are connected to each other. Thus, develop a novel freezing network with a pyramid spatial channel attention mechanism (FPSC-Net) in deep modeling. This model studies how specific design choices in the large-scale data-driven optimization and creation process affect the balance between the accuracy and effectiveness of the designed deep intelligent model. To this end, this study presents a novel architecture unit, which is termed as the "Activate-and-Freeze" block on popular and highly competitive datasets. In order to extract informative features by fusing spatial and channel-wise information together within local receptive fields and boost the representation power, this study constructs a Dense-attention module (pyramid spatial channel (PSC) attention) to perform feature recalibration, and through the PSC attention to model the interdependence among convolution feature channels. We join the PSC attention module in the activating and back-freezing strategy to search for one of the most important parts of the network for extraction and optimization. Experiments on various large-scale datasets demonstrate that the proposed method can achieve substantially better performance for improving the ConvNets representation power than the other state-of-the-art deep models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.