Abstract

The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus it can resolve the main challenges for next-generation wireless networks, including higher energy efficiency and spectral efficiency, higher cost efficiency, scalable connectivity, and low latency. In this article we will provide an algorithmic approach to the new design challenges for the dense heterogeneous Cloud-RAN based on convex optimization. As problem sizes scale up with the network size, we will demonstrate that it is critical to take unique structures of design problems and inherent characteristics of wireless channels into consideration, while convex optimization will serve as a powerful tool for such purposes. Network power minimization and channel state information acquisition will be used as two typical examples to demonstrate the effectiveness of convex optimization methods. Then we will present a twostage framework to solve general large-scale convex optimization problems, which is amenable to parallel implementation in the cloud data center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.