Abstract
The interplay between T cell receptors (TCRs) and peptides bound by major histocompatibility complexes (MHCs) is one of the most important interactions in the adaptive immune system. Several previous studies have computationally investigated their structural dynamics. On the basis of these simulations several structural and dynamical properties have been proposed as effectors of the immunogenicity. Here we present the results of a large scale Molecular Dynamics simulation study consisting of 100 ns simulations of 172 different complexes. These complexes consisted of all possible point mutations of the Epstein Barr Virus peptide FLRGRAYGL bound by HLA-B*08:01 and presented to the LC13 TCR. We compare the results of these 172 structural simulations with experimental immunogenicity data. We found that simulations with more immunogenic peptides and those with less immunogenic peptides are in fact highly similar and on average only minor differences in the hydrogen binding footprints, interface distances, and the relative orientation between the TCR chains are present. Thus our large scale data analysis shows that many previously suggested dynamical and structural properties of the TCR/peptide/MHC interface are unlikely to be conserved causal factors for peptide immunogenicity.
Highlights
Recognition of immunogenic peptides presented by Major Histocompatibility Complex (MHC) molecules to the T-cell receptor (TCR) of T-cells is a key event in the adaptive immune response
In terms of differences between groupM and groupL we found that the distances between the central kink of MHC helix 2 are closer to CDR1a and CDR2a for more immunogenic peptides (Figure 6D,F)
In this study we presented the, to our knowledge, largest TCRpMHC dataset consisting of 172 simulations of 100 ns length each
Summary
Recognition of immunogenic peptides presented by Major Histocompatibility Complex (MHC) molecules to the T-cell receptor (TCR) of T-cells is a key event in the adaptive immune response. In order to achieve this recognition process, a peptide in the MHC class I pathway will go through several processing steps [1]. The peptide enters the endoplasmic reticulum (ER) via the ‘‘transporter associated with antigen processing’’ (TAP) or alternative pathways such as Sec61 [2]. A potential epitope must bind to the MHC class I molecule. This peptide/MHC (pMHC) complex is presented at the cell surface where its recognition by the complementary determining regions (CDRs) of TCRs can take place
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.