Abstract

Modern computers require an exponential increase in resources when solving computationally hard problems, motivating the need for an alternative computing platform to solve such problems in an energy‐efficient manner. Vertex coloring, a nondeterministic polynomial time (NP‐hard) combinatorial optimization problem, is one such problem. Herein, an experimental demonstration of using cardiac cell‐based bio‐oscillator network coupling dynamics to solve a vertex coloring problem in various scales of graphs using a simple cell patterning method to construct scalable and controlled cardiac cell networks is presented. Although there are limitations to using these cardiac cells as oscillators, such as their low frequency compared to complementary metal–oxide–semiconductor (CMOS) oscillators, that result in longer processing times, the accuracy in large graph instances, the significantly less amount of energy consumption, and the ease of fabrication and potential to extend this system to massively parallel 3D structures make the bio‐oscillators a promising new platform for collective computing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.