Abstract
Projectors based on Micro-Electro-Mechanical System (MEMS) have the advantages of small size and low cost. Moreover, uniaxial MEMS projectors have high projection accuracy, and have been widely used in structured light 3D reconstruction. However, the existing calibration methods for uniaxial MEMS projectors are not effective in large-scale scenes. To solve this problem, this paper proposes a novel efficient large-scale calibration method, which is easily implemented. The proposed method first calibrates a partial light plane for a fixed sampling period, then obtains the rest of the light plane by exploiting a non-fixed rotating shaft linear interpolation method. Experimental results verify that the proposed method attains high accuracy in a large depth field with only 11 sets of calibration data. Specifically, at a distance of 3000mm, the standard deviation of the plane fitting error reaches 0.2584mm on the standard plane, and the measurement accuracy attains 0.9124mm on the standard step object with 200mm interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.