Abstract

We present a computational approach to describe structure of light nuclei including cluster states. Apart from the use of an empirical nuclear force, Skyrme interaction, our scheme does not utilize any a priori knowledge on the structure of nuclei. In our framework, we first generate a number of Slater determinants in a stochastic way. We then make projections of parity and angular momentum, and perform configuration mixing calculation. We show results for 12C and 16O nuclei. Our calculation provides a reasonable description for the ground state rotational band, Hoyle state, and low-lying negative parity states of 12C. We may also describe the 0+2 rotational band of 16O, although excitation energies are slightly overestimated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call