Abstract
The Turkey–Syria earthquakes that occurred on February 6, 2023, have caused significant human casualties and economic damage. Emergency services require quick and accurate assessments of widespread building damage in affected areas. This can be facilitated by using remote sensing methods, specifically all-day and all-weather Synthetic Aperture Radar (SAR). In this study, we aimed to improve the detection of building anomalies in earthquake-affected areas using SAR images. To achieve this, we employed Recurrent Neural Network (RNN) to train coherence time series and predict co-seismic coherence. This approach allowed us to generate a Damage Proxy Map (DPM) for building damage assessment. The results of our study indicated that the estimated proportion of building damage in Kahramanmaras was approximately 24.08%. These findings were consistent with the actual damage observed in the field. Moreover, when utilizing the mean and standard deviation of coherence time series, our method achieved higher accuracy (0.761) and a lower false alarm rate (0.136) compared to directly using coherence with only two views of SAR data. Overall, our study demonstrates that this method provides an accurate and reliable approach for post-earthquake building damage assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.