Abstract

In computer vision, many problems can be formulated as binary quadratic programs (BQPs), which are in general NP hard. Finding a solution when the problem is of large size to be of practical interest typically requires relaxation. Semidefinite relaxation usually yields tight bounds, but its computational complexity is high. In this work, we present a semidefinite programming (SDP) formulation for BQPs, with two desirable properties. First, it produces similar bounds to the standard SDP formulation. Second, compared with the conventional SDP formulation, the proposed SDP formulation leads to a considerably more efficient and scalable dual optimization approach. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the simplified dual problem. Both of them are significantly more efficient than standard interior-point methods. Empirically the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.