Abstract

In recent years it became clear that the metallic regime of systems that exhibit a many body localization (MBL) behavior show properties which are quite different than the vanilla metallic region of the single particle Anderson regime. Here we show that the large scale energy spectrum of a canonical microscopical model featuring MBL, displays a non-universal behavior at intermediate scales, which is distinct from the deviation from universality seen in the single particle Anderson regime. The crucial step in revealing this behavior is a global unfolding of the spectrum performed using the singular value decomposition (SVD) which takes into account the sample to sample fluctuations of the spectra. The spectrum properties may be observed directly in the singular value amplitudes via the scree plot, or by using the SVD to unfold the spectra and then perform a number of states variance calculation. Both methods reveal an intermediate scale of energies which follow super Posissonian statistics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.