Abstract

Many cities worldwide have large amounts of industrial vacant land (IVL) due to development and transformation, posing a growing problem. However, the large-scale identification of IVL is hindered by obstacles such as high cost, high variability, and closed-source data. Moreover, it is difficult to distinguish industrial vacant land from operational industrial land based solely upon image features. To address these issues, we propose a method for the large-scale automatic identification of IVL. The framework uses deep learning to train remote-sensing images of potential industrial vacant land to generate a semantic segmentation model and further use population density and surface temperature data to filter model predictions. The feasibility of the proposed methodology was validated through a case study in Tangshan City, Hebei Province, China. The study indicates two major conclusions: (1) The proposed IVL identification framework can efficiently generate industrial vacant land mapping. (2) HRNet exhibits the highest accuracy and strongest robustness after training compared with other semantic segmentation backbone networks, ensuring high-quality performance and stability, as evidenced by a model accuracy of 97.84%. Based on the above advantages, the identification framework provides a reference method for various countries and regions to identify industrial vacant land on a large scale, which is of great significance for advancing the research and transformation of industrial vacant land worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call