Abstract
ABSTRACTAtomistic modelling of Materials Science problems often requires the simulation of systems with an irreducibly-large unit cell, such as amorphous materials, fullerites, or systems containing extended defects, such as dislocations, cracks or grain boundaries. Large-scale simulations with the Tight-Binding approach must face the computational obstacle represented by the O(N3)-scaling of the diagonalization of the Hamiltonian matrix. This bottleneck can be overcome by parallel computing techniques and/or the introduction of faster, O(N)-scaling algorithms. We report the activities performed in the frame of a collaboration among several research groups on the porting of TBMD codes on parallel computers. In particular, we describe the porting of a O(N3) TBMD code on different MIMD computers, with either distributed or shared memory, by using appropriate software tools. Furthermore, preliminary results obtained in the porting of an O(N) TBMD code on an experimental, hybrid MIMD-SIMD computer architecture are reported. The new perspective of using specialized platforms to deal with large-scale TBMD simulation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.