Abstract
AbstractMultiple previous studies using several different probes have shown considerable evidence for the existence of cosmological‐scale anisotropy and a Hubble‐scale axis. One of the probes that show such evidence is the distribution of the directions toward which galaxies spin. The advantage of the analysis of the distribution of galaxy spin directions compared to the cosmic microwave background anisotropy is that the ratio of galaxy spin directions is a relative measurement, and therefore less sensitive to background contamination such as Milky Way obstruction. Another advantage is that many spiral galaxies have spectra, and therefore allow to analyze the location of such axis relative to Earth. This paper shows an analysis of the distribution of the spin directions of over 90K galaxies with spectra. That analysis is also compared to previous analyses using the Earth‐based Sloan Digital Sky Survey, Panoramic Survey Telescope and Rapid Response System, and Dark Energy Spectroscopic Instrument Legacy Survey, as well as space‐based data collected by Hubble Space Telescope. The results show very good agreement between the distribution patterns observed with the different telescopes. The dipole or quadrupole axes formed by the spin directions of the galaxies with spectra do not necessarily go directly through Earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.