Abstract

Abstract. Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.