Abstract
Using data from SCAR observations, ERA5 reanalysis, and regional climate model simulations (RACMO), we examined the influence of large- and regional-scale climate forcing on temperature and precipitation variations in the South Shetland Islands (SSI). Specifically, we focused on understanding how regional climate indices influence the temporal variability of temperature and precipitation on the SSI. Our findings indicate that both large- and regional-scale climate indices significantly impact the interannual and seasonal temperature variability in the SSI. For instance, the Amundsen Sea Low, characterised by low-pressure systems over the Amundsen Sea, and sea ice extent in the northwestern part of the Weddell Sea, exert a strong influence on temperature variability (r from -0.64 to -0.87; p < 0.05). In contrast, precipitation variability in this region is primarily controlled by regional climatic indices. Particularly, anomalies in atmospheric and surface pressure over the Drake Passage region strongly regulate the interannual variability of precipitation in the SSI (r from -0.46 to -0.70; p < 0.05). Large-scale climatic indices demonstrate low but statistically significant correlations, including the Southern Annular Mode and deep convection in the central tropical Pacific. Given the importance of temperature and precipitation in the glacier changes, we recommend assessing the impact of the Drake region on SSI glaciers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.