Abstract

HSA is considered a versatile natural cargo carrier with multiple bio-functions and applications. However, insufficient supply of HSA has limited widespread use. Although various recombinant expression systems had been applied to produce the rHSA to overcome the limited resource, cost-effective and large scale production of rHSA remains a challenge. Herein, we provide a strategy for the large-scale and cost-effective production of rHSA in cocoons of transgenic silkworms, achieving a final 13.54 ± 1.34 g/kg of rHSA yield in cocoons. rHSA was efficiently synthesized and stable over the long-term in the cocoons at room temperature. Artificial control of silk crystal structure during silk spinning significantly facilitated rHSA extraction and purification, with 99.69 ± 0.33 % purity and a productivity of 8.06 ± 0.17 g rHSA from 1 kg cocoons. The rHSA had the same secondary structure to natural HSA, along with effective drug binding capacity, biocompatibility, and bio-safe. The rHSA was successfully evaluated as a potential substitute in serum-free cell culture. These findings suggest the silkworm bioreactor is promising for large-scale and cost-effective production of high quality rHSA to meet the increased worldwide demand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call