Abstract

BackgroundOsteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). MethodsWe used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. ResultsOf osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. ConclusionWe successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.