Abstract
We develop large sample theory for merged data from multiple sources. Main statistical issues treated in this paper are (1) the same unit potentially appears in multiple datasets from overlapping data sources, (2) duplicated items are not identified and (3) a sample from the same data source is dependent due to sampling without replacement. We propose and study a new weighted empirical process and extend empirical process theory to a dependent and biased sample with duplication. Specifically, we establish the uniform law of large numbers and uniform central limit theorem over a class of functions along with several empirical process results under conditions identical to those in the i.i.d. setting. As applications, we study infinite-dimensional $M$-estimation and develop its consistency, rates of convergence and asymptotic normality. Our theoretical results are illustrated with simulation studies and a real data example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.