Abstract

Mobilization of terrestrial-derived and recalcitrant black carbon (BC), including char and soot, from land to ocean exerts a significant influence on the global carbon cycle. This study elaborated the occurrence and spatial distributions of BC, char, and soot concentrations, as well as their burial fluxes, in the estuarine-inner shelf surface sediments of the East China Sea (ECS), an epicontinental sea adjacent to Chinese high-intensity BC emission source regions. Using a combination of BC measurements in the Yangtze River water and coastal ECS aerosol samples, a preliminary BC budget was concurrently constrained. The spatial distribution of char concentrations resembled largely that of BC, but differed significantly from that of soot, indicating that char and soot exhibited different geochemical behaviors. In contrast to concentrations, BC, char, and soot burial fluxes exhibited highly consistent spatial patterns, and all declined as the distance from the coastline increased. For the coastal ECS, riverine discharge dominated (~92%) the total BC input, with the Yangtze River alone accounting for as high as ~72%. The area-integrated sedimentary BC sink flux (630 ± 728 Gg/yr) in the coastal ECS was equivalent to the total BC influx (670 ± 153 Gg/yr), which coincided well with the regional sediment budget. This suggested that the terrestrial-derived and recalcitrant BC could be regarded as an alternative geochemical proxy for tracing the sediment source-to-sink processes in this region. Comparisons between BC and co-generated polycyclic aromatic hydrocarbons (PAHs) budgets in the coastal ECS revealed similarities in their input pathways, but dramatic differences in their ultimate fates. Despite these, the ECS estuarine-inner shelf could serve as a major sink of these terrestrial-based materials in the global ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.