Abstract

The magnetic properties, magnetic phase transition and magnetocaloric effects (MCE) of Er3Si2C2 compound were investigated based on theoretical calculations and experimental analysis. Based on the first principles calculations, the antiferromagnetic (AFM) ground state type in Er3Si2C2 compound was predicted and its electronic structure was investigated. The experimental results show that Er3Si2C2 compound is an AFM compound with the Néel temperature (TN) of 7 K and undergoes a field-induced first-order magnetic phase transition from AFM to ferromagnetic (FM) under magnetic fields exceeding 0.6 T at 2 K. The magnetic transition process of Er3Si2C2 compound was investigated and discussed. The values of the maximum magnetic entropy change (−ΔSMmax) and the refrigeration capacity (RC) are 17 J/(kg∙K) and 193 J/kg under changing magnetic fields of 0–5 T, respectively. As a potential cryogenic magnetic refrigerant, the Er3Si2C2 compound also provides an interesting research medium to study the magnetic phase transition process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call